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1 | INTRODUCTION

| Di An | Justin P. Haldar

Abstract

Purpose: The performance of modern image reconstruction methods is commonly
judged using quantitative error metrics like root mean squared-error and the struc-
tural similarity index, which are calculated by comparing reconstructed images
against fully sampled reference data. In practice, the reference data will contain noise
and is not a true gold standard. In this work, we demonstrate that the “hidden noise”
present in reference data can substantially confound standard approaches for ranking
different image reconstruction results.

Methods: Using both experimental and simulated k-space data and several differ-
ent image reconstruction techniques, we examined whether there was correlation
between performance metrics obtained with typical noisy reference data versus those
obtained with higher-quality reference data.

Results: For conventional performance metrics, the reconstructions that matched
best with the higher-quality reference data were substantially different from the
reconstructions that matched best with typical noisy reference data. This leads to sub-
optimal reconstruction results if the performance with respect to noisy reference data
is used to select which reconstruction methods/parameters to employ. These issues
were reduced when employing alternative error metrics that better account for noise.
Conclusion: Reference data containing hidden noise can substantially mislead the
ranking of image reconstruction methods when using conventional error metrics, but
this issue can be mitigated with alternative error metrics.
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the empirical tuning of image reconstruction parameters
and/or to provide guidance on which image reconstruction

In recent years, it has become increasingly common to
judge the quality of MRI reconstruction methods using
quantitative error metrics like root mean-squared error
(RMSE), mean absolute error (MAE), and the structural
similarity index (SSIM).! Driven in part by trends in
machine learning,>* it has also become increasingly com-
mon that these quantitative error metrics are used for

methods should be employed in practical applications.
(Interestingly, the use of these kinds of quantitative error
metrics was not popular in the early MRI reconstruction
literature—interested readers are referred to the bibliogra-
phy of Reference 5 for historical context).

RMSE, MAE, and SSIM are all examples of
“full-reference” error metrics,! and are intended to be
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A representative multichannel T2-weighted brain image from the fastMRI dataset. Left: root sum-of-squares (rSoS) image.

Right: Depiction of the 16 original individual channels that were combined to form the rSoS image. It is visually obvious that the individual

channels each contain substantial amounts of noise.

used to evaluate the degree of similarity between a recon-
structed image and a “gold standard” reference image.
However, it is never possible to experimentally measure a
true gold standard in MRI, because real data will always
contain thermal noise. As such, it has become standard
procedure to calculate measures like RMSE, MAE, and
SSIM using an image formed from noisy Nyquist-sampled
k-space data as a reference, often based on the implicit
assumption that the noise should be small and have a
negligible effect on the calculated values. We refer to the
noise in a noisy reference image as “hidden noise,” since
conventional error metrics will treat it as a desired part
of the reference image rather than properly treating it as
undesirable error.

Importantly, hidden noise can be substantial, even
when it is not visually obvious. To illustrate, Figure 1
shows a typical multichannel brain MRI dataset from
the widely used fastMRI database.” While the root
sum-of-squares (rSoS) image (a common choice of refer-
ence image in the modern literature) visually appears to
have excellent signal-to-noise ratio (SNR), closer examina-
tion demonstrates that there is actually substantial noise
present in the individual channels. This implies that the
pristine appearance of the rSoS image is misleading, and
hides a substantial noise bias. Note also that rSoS images
should follow the non-central chi (NCC) distribution,3!!
with an expected value that is biased away from the value

that would be observed with noiseless data. Hidden noise
is also evident in k-space, as illustrated in Figure 2, which
demonstrates that the SNR is small (<2) for substantial
portions of k-space and suggests that high-frequency infor-
mation may be unreliable in the original raw data.

In this work, we investigate how hidden noise can
impact the assessment of image reconstruction perfor-
mance when typical noisy Nyquist-sampled rSoS images
are used as reference images. Importantly, we observe
that the effects of hidden noise can cause incorrect rank-
ing of image reconstruction results, leading to subopti-
mal reconstruction quality when standard performance
metrics are used to optimize reconstruction performance.
However, we also demonstrate that these confounds can
be reduced when employing alternative error metrics that
better account for noise.

A preliminary account of portions of this work was
previously presented at a recent conference.'#

2 | THEORY

Traditional full-reference image quality measures like
RMSE, MAE, and SSIM were designed for scenarios
where the reference image is pristine, and does not pos-
sess the bias or variability characteristics of a noisy ref-
erence image. When using a noisy reference image in

85U8017 SUOLLLOD BAE8.D 3ol jdde au Aq peusenob afe ol VO ‘8sn Jo sa|n. 10y Aelq i 8UIjUO AB|IA UO (SUORIPUOD-PUR-SWB W00 A8 |1 ATeIq 1 jeul|uo//SdnL) SUORIPUOD pUe SWLe | 841 88S *[Z0Z/TT/c2] Uo ARiqiTauljuo A8]IM ‘00TOE WIW/Z00T OT/I0p/W0D A8 | IMAleIq Ul |Uo//SAny Woly pepeo|umod ‘€ ‘vZ0Z ‘v65222ST



‘WANG ET AL.

984 . . o o
—I—Magnetlc Resonance in Medicine

FIGURE 2

(A) 16-channel k-space data corresponding to the same dataset from Figure 1. (B) The same data from (A), but normalized

by the noise variance of each channel and color-coded to more easily visualize the signal-to-noise ratio (SNR) characteristics in different

regions of k-space. In all channels, there are substantial regions of k-space with SNR<2.

place of a pristine reference image, treating the noise
as part of the desired gold standard may lead to RMSE,
MAE, and SSIM values that are easily misinterpreted,
and properly accounting for noise in the reference image
may be essential for an accurate assessment of image
quality.

Fortunately, methods to account for noise bias and
variability are well explored in fields like statistical sig-
nal processing and estimation theory.!®> In these fields,
consistency with noisy data would not typically be mea-
sured with metrics like RMSE, MAE, or SSIM except in
circumstances where these metrics happened to coincide
with characteristics of the noise distribution. Instead,
standard practice would be to measure data consistency
using statistically informed (“noise aware”) metrics like
the negative log-likelihood function. If x represents an
estimate of the unknown parameters (e.g., an MRI image
reconstruction), then the negative log-likelihood function
assuming noisy reference measurements y would be given
by —Inp(y|x), where p(y|x) represents the conditional
probability (depending directly on noise modeling
assumptions) of measuring the noisy data y under the
assumption that the estimated values x were perfectly
accurate. The negative log-likelihood function is one of
the key elements of the statistical signal processing and
estimation theory toolbox, and for example is the sole
function used to measure consistency with a noisy mea-
surement in popular methods like maximume-likelihood

estimation, penalized maximum-likelihood estimation,
and (Bayesian) maximum a posteriori estimation.!®

In the following subsections, we review the noise
model and the classical negative log-likelihood func-
tion for rSoS MRI images, which we use to define a
statistically-motivated image quality metric that better
accounts for noise.

21 |
images

Noise modeling for rSoS MRI

Without loss of generality, we will describe noise modeling
for a simple two-dimensional multichannel MR imaging
scenario where data is collected from L distinct channels,
although the same ideas generalize naturally to other con-
texts. For each channel, we assume that noisy k-space
samples have been acquired at the Nyquist rate on a
fully sampled Cartesian grid of size Ny X N,, and that a
basic inverse discrete Fourier transform (without apodiza-
tion, zero-paddding, or other forms of processing that
could influence the noise distribution) has been applied
to the k-space data to produce a noisy image for the Zth
channel fz[m, n] defined on an Ny X N, voxel grid. The
noisy image fy[m,n] can be decomposed as fy[m,n] =
gslm, n] + zo[m, n], where g.[m,n] represents the ideal
image that would have been acquired in the absence of
noise, while z,[m, n] represents the noise contribution.
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Using standard thermal noise assumptions, the acquisi-
tion and reconstruction procedures described above imply
that the noise samples at distinct voxel locations will follow
independent and identical zero-mean circularly symmet-
ric complex-valued Gaussian distributions.!®

A noiseless (“gold standard”) rSoS reference image is
not possible to obtain in practice, but would ideally be
given by

L

|gs[m, n]|2. ®
=1

Fideallm, n] =

The practical (“noisy”) rSoS reference image that is popu-
lar in the modern literature is given by

L
rnoisy[ms n] = Z Iff[m, n]|?
& @)

L

= \ Z|gg[m, n] +z¢[m, n]|>.

=1

If the interchannel noise covariance matrix has been
prewhitened such that the complex-valued noise in each
channel is uncorrelated with common variance ¢2,” then
itis straightforward to show that ryisy[m, n] follows a NCC
distribution, and that

E{(Fnoisy[m, n])*} = (rigea[m, nl)* + 6L, (3)

where we have chosen to show the expectation of the
square of rneisy[m, n] because it leads to a much simpler
mathematical expression than the exception of ryeisy[m, 1]
itself (see, e.g., Reference 8 for a complicated expression
for the expectation of ryoisy[m, n]). It is easy to observe
that the values of ryoisy[m, n] will be biased away from
the values of rigeq1[m, n], with the amount of bias depen-
dent on the noiseless signal intensity.®!! In addition, it
can be shown that rigea1[m, n] will have a signal-dependent
(spatially varying) variance,®!! meaning that some voxel
values will be more or less reliable than others.

Assuming that rwecon[m, n] denotes a reconstructed
MRI magnitude image, and that we wish to com-
pare this reconstruction against a noisy rSoS refer-
ence image roisy[m, n] that obeys the the NCC noise
assumptions described above, the corresponding negative
log-likelihood would take the form (neglecting unimpor-
tant additive constants)®!!

L reconlm, mD? + (L = 1) In(rreconlm. 1)

-Inpylx) = )’ i, ((rrmn[m,n])(rnoisy[m,nn) ;
- L-1

m,n

0.5¢2

4)
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where I; (-) is the Lth-order-modified Bessel function of the
first kind.

Although the previous description is specific to
prewhitened data, it is common within the modern
machine learning literature form reference images by
applying rSoS directly to images from the original
channels without any prewhitening. In this case, the
complex-valued noise images z.[m,n] will possess an
interchannel noise covariance matrix ¥ e CI*L 1718 and
the rSoS coil combined image will no longer exactly
match the NCC distribution.!® However, it has been pre-
viously demonstrated that the NCC distribution can still
be used to closely approximate the distribution that arises
from non-prewhitened datal® as long as the negative
log-likelihood function from Equation (4) is evaluated
using appropriately-chosen “effective” NCC parameters L
and & that differ from the physical L and ¢ parameters.

2.2 | Noncentral chi error metric

As noted previously, the negative log-likelihood provides
a natural “noise aware” metric of data consistency. In
this work, we define the noncentral chi error (NCE)
metric as a normalized version of the classical negative
log-likelihood. Specifically, the NCE metric measures the
distance between a reconstruction x and a noisy reference
image y using

NCE(x,y) = — Inp(y|x) + In p(yly). ©)

where the negative log-likelihoods are calculated using
Equation (4), and the second term in Equation (5) is a nor-
malization constant that ensures that NCE(y,y) = 0. Sim-
ilar to other commonly used normalization approaches,
our choice of normalization for NCE is somewhat arbi-
trary and not strictly necessary, though helps make the
NCE(-) values more consistent and potentially easier to
interpret and compare across different datasets. Note that
the NCE(-) function can take on both positive and nega-
tive real values, with smaller values (i.e., larger negative
values) indicating better consistency between the recon-
structed image and the noisy reference image.

Evaluation of the NCE metric requires calculation of
negative log-likelihood values, which, in the context of
nonwhitened data, requires knowledge of  and L. Ideally,
these parameters could be derived from knowledge of the
subject-specific interchannel noise covariance matrix ¥,
which is typically measured by default on most MRI scan-
ners using noise-only calibration scans. However, these
noise calibration scans are frequently unavailable from
large public repositories of MRI k-space data. For the
results shown in this work (and similar to Reference 11),
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we find image-dependent maximum likelihood estimates
for the values of & and L based on data from background
(“noise only”) regions of each noisy image.

3 | METHODS

The fact that noise is always present in real MRI data
represents a fundamental obstacle to the evaluation of
different image quality metrics, and means that practi-
cal compromises must be made in order to define “clean”
reference images. We have approached this issue in two
different ways, one based on averaging and the other based
on denoising. Neither of these approaches is perfect, but
the two approaches have different limitations and should
provide complementary insights.

3.1 | Testing regularized reconstruction
using averaged data

Our first set of experiments is based on a slice from a
standard fully-sampled in vivo brain MPRAGE dataset
acquired at our institution with a 3T Siemens Prisma
scanner (roughly 1 mm isotropic resolution over a 210
mm X 154 mm field-of-view, using a 32-channel receiver
array). In order to obtain both a typical reference dataset
(to emulate standard performance assessment with a
noisy reference) and a higher-SNR reference dataset (to
more accurately assess true performance), we acquired
this data with five averages. A single average was used
to create the typical (“noisy”) reference, while all aver-
ages (with additional singular value decomposition-based
denoising, achieved by zeroing the noise-dominated prin-
cipal components along the channel dimension'”) were
used for the higher-SNR (“clean”) reference. While
the clean reference image is not perfectly noiseless,
it is nevertheless substantially better than the noisy
reference.

This MPRAGE data were used to emulate a typical
parameter-tuning application in regularized image recon-
struction from accelerated k-space data. Specifically, the
(noisy) single-average k-space data was retrospectively
undersampled, using a uniform one-dimensional under-
sampling pattern that kept every third line of k-space
while also fully sampling the central 16 k-space lines
(total acceleration factor = 2.6x). This undersampled
data was reconstructed using three different regularized
reconstruction methods: SENSE-based parallel imag-
ing!” with a total variation regularization constraint
(SENSE-TV)?%2L; Autocalibrated LORAKS (AC-LORAKS)
reconstruction?? which imposes phase constraints,
support constraints, and parallel imaging constraints

(i.e., the LORAKS S-matrix*>?*) using a fixed low-
dimensional subspace that has been pre-estimated from
the fully sampled center of k-space; and P-LORAKS??
which imposes the same constraints as AC-LORAKS
but updates the estimate of the low-dimensional sub-
space at each iteration of the optimization algorithm.
All three reconstructions were formulated using penal-
ized maximum likelihood principles (i.e., the noise
covariance was included in the data consistency term
in each case).!” SENSE-TV was implemented using sen-
sitivity maps estimated with the PISCO algorithm?>
and optimization was performed using the version of
Nesterov’s algorithm described in References 26 and
27, while AC-LORAKS was implemented using a mul-
tiplicative half-quadratic algorithm without FFTs?8
and P-LORAKS was implemented using an additive
half-quadratic algorithm.?® To emulate typical parame-
ter tuning applications, reconstructions were performed
using a variety of different reconstruction parameters
(i.e., different regularization parameters for SENSE-TV,
and different regularization parameters and matrix
ranks for AC-LORAKS and P-LORAKS). Reconstruc-
tions obtained with each method were coil-combined
using rSoS (in the case of SENSE-TV, we used the sen-
sitivity maps to generate multichannel images prior
to rSoS combination), and were compared against the
“clean” and “noisy” rSoS reference images using conven-
tional error metrics (RMSE, MAE, SSIM) and our new
NCE metric.

3.2 | Testing machine learning
reconstruction with denoised data

Our second set of experiments is based on 16-channel
T2-weighted brain images from the fastMRI database.” We
selected the central eight brain slices from 425 subjects in
the database (3400 slices total), and applied standard fil-
tering and downsampling operations to finish the remain-
ing steps of oversampled analog-to-digital conversion®
(the data was acquired with 2x oversampling along the
readout dimension but was provided in an intermediate
raw form prior to accounting for the analog anti-aliasing
filter). The images had 0.5 mm X 0.5 mm in-plane res-
olution with a matrix size of 384 x 396. To generate
“clean” reference images, each multichannel dataset was
whitened,!” then processed with a parameter-free mul-
tichannel image denoising method based on the use of
wavelet thresholding with Stein’s Unbiased Risk Estima-
tor,* and was then transformed back to k-space in the
original “unwhitened” channel domain. This denoising
approach, while imperfect (denoising processes are never
perfect and the “clean” images are likely to have lost

958217 SUOLULLOD S0 (el dde au Aq peuienob aJe Saoie YO ‘ash J0 Sajn. Joj AkelqiauluO AS|IM UO (SUORIPUOD-PUE-SLLIS) L0 A 1M Ae1q) 1 ]BUI|UO//:SANY) SUOIPUOD pue SWie 1 a4} 88S *[202/TT/c2] Uo ARlqiauluO A8]IM ‘00TOE WW/Z00T OT/10p/wWoo" A8 1M Ale.d 1 jeuluo//:sdny wolj pspeojumod ‘€ ‘v202 ‘¥65222ST



WANG ET AL.

some real image features), will at least allow us to mimic
having access to thousands of “clean” reference images
with matched “noisy” data in a controlled scenario, as
needed to test the effects of hidden noise on machine
learning methods. To simulate “noisy” data, we then
added complex Gaussian noise to the “clean” k-space data
following the original interchannel covariance matrix.!”
The noisy k-space data was retrospectively undersam-
pled using a uniform one-dimensional undersampling pat-
tern that kept every fourth line of k-space while also
fully sampling the central 24 k-space lines (total accelera-
tion factor = 3.4x). The 3400 slices were partitioned into
groups of 3000:200:200 for training, validation, and testing,
respectively.

To emulate typical methods comparisons and param-
eter tuning applications in machine learning, we used
the 3000 pairs of fully sampled and undersampled noisy
data to train three different machine learning reconstruc-
tion approaches: the version of U-Net®' reconstruction
provided alongside the fastMRI dataset,” MoDL,*? and
E2E-VarNet.?* Each reconstruction approach was trained
using a range of different parameter variations. The U-Net
was fixed to be a nine-layer network with 32 channels in
each layer after the first, and was trained with six different
numbers of training epochs (100, 110, 120, 130, 140, and
150) and two different loss functions (RMSE and MAE)
for a total of 12 different trained U-Net variations. Fol-
lowing the original reference,* MoDL was implemented
using 10 outer iterations, where each outer iteration com-
prises a denoising layer (implemented using a five-layer
CNN) and a data consistency layer (implemented using a
fixed number of 10 conjugate gradient iterations), using
the same parameter variations that were used for the U-Net
(six different numbers of training epochs and two dif-
ferent loss functions), for a total of 12 different trained
MoDL variations. E2EVarNet was implemented with 3
different network variations (a cascade of six U-Nets,
where each U-Net uses 20 channels in each layer after
the first; a cascade of 7 U-Nets, where each U-Net uses
18 channels in each layer after the first; and a cascade
of eight U-Nets, where each U-Net uses 16 channels in
each layer after the first), and was trained with two dif-
ferent loss functions (RMSE and MAE) and four differ-
ent numbers of training epochs (100, 110, 120, and 130)
for a total of 24 different trained E2E-VarNet variations.
As before, reconstructions obtained with each method
were compared against the “clean” and “noisy” rSoS ref-
erence images using conventional error metrics (RMSE,
MAE, SSIM) and our new NCE metric. Training was per-
formed using the Adam optimizer in all cases, with a
learning rate of 0.0003 for U-Net and E2E-VarNet and 0.001
for MoDL.

Magnetic Resonance in Medicineﬂ
4 | RESULTS

4.1 | Regularized reconstruction using
averaged data

Correlations between reconstruction error metrics
obtained with “clean” and “noisy” reference MPRAGE
images are shown in Figures 3 and S1 for P-LORAKS
(showing behavior as a function of different rank choices
and different regularization parameter choices, respec-
tively) and in Figure 4 for SENSE-TV. The trends observed
with AC-LORAKS were similar to those observed with
P-LORAKS, and are not shown. In most cases (except for
SSIM with SENSE-TV), there is relatively poor correla-
tion (correlation coefficient p < 0.55) between the RMSE,
MAE, and SSIM values obtained with the “clean” refer-
ence and the “noisy” reference. Importantly, in many of
the P-LORAKS cases, there is substantial negative correla-
tion between the error metrics obtained with the “clean”
reference and the “noisy” reference, suggesting that if
the error metrics from the “noisy” reference are used to
tune reconstruction parameters, then this tuning process
will be misled by the hidden noise that is present in the
“noisy” reference data, which will ultimately lead to an
unnecessary degradation in image quality. In contrast, the
NCE metric used with the “noisy” reference is much more
strongly correlated (correlation coefficient p > 0.9 in all
cases) with the RMSE, MAE, and SSIM values obtained
with the “clean” reference.

More insight into this phenomenon can be gained from
plotting the same data in a different way. Figure 5 shows
the same data from Figure 3 in a different way, with
error metrics plotted as a function of the P-LORAKS rank
parameter. As can be seen, the optimal rank parameter that
would be selected using RMSE, MAE, or SSIM calculated
with the “clean” reference (83 or 84 depending on the met-
ric) is often smaller than the optimal rank parameter that
would be selected using the “noisy” reference (85, 90, or 91
depending on the metric). The optimal rank that would be
selected under the NCE criteria is 84, similar to the choice
that would be made using the “clean” reference. Similarly,
Figure 6 shows the same data from Figure 4 in a differ-
ent way, with error metrics plotted as a function of the
P-LORAKS regularization parameter. As can be seen, the
optimal regularization parameter that would be selected
using the “clean” reference (ranging from 0.013 to 0.020
depending on the metric) is much larger than the optimal
regularization parameter that would be selected using the
“noisy” reference (which is always less than 0.006 for all
metrics), while the optimal rank parameters that would be
selected based on the NCE criteria (0.013) is more consis-
tent with the values chosen using the “clean” reference.
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FIGURE 3  Evaluation of P-LORAKS reconstructions (with different rank parameters, for a fixed value of the regularization parameter)
using different error metrics. The top row shows correlations between the root mean-squared error (RMSE), mean absolute error (MAE), and
the structural similarity index (SSIM) values obtained using a high-quality (5x-averaged) “clean” reference and the same metrics obtained
using a single-average “noisy” reference, while the bottom row demonstrates correlations between the high-quality reference metrics and our
proposed noncentral chi error metric.
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while the bottom row demonstrates correlations between the high-quality reference metrics and our proposed noncentral chi error metric.
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results (with different rank parameters) RMSE clean ref
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FIGURE 6 The same P-LORAKS 1 w w
results (with different regularization RMSE clean ref
. = = MAE clean ref
parameters) from Figure 4 but now 0.9 - — . — . 1.SSIM clean ref |7
plotted as a function of the rank RMSE noisy ref
. : — — MAE noisy ref
parameter. Since each metric has a 0.8 — - —- 1-55IM noisy ref ||
different dynamic range, we have NCE
normalized each parameter (so that it 0.7 -
ranges from 0 to 1, with smaller values
indicating better performance) for 06 -
easier visualization. Metrics obtained
using the “clean” reference are 05l
displayed in red, while metrics obtained
using the “noisy” reference are 04l
displayed in blue, and the noncentral '
chi error metric is displayed in black. 03
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Similar results were obtained with SENSE-TV, and are not
shown. Collectively, these results further confirm that if a
noisy reference image is used for parameter tuning, it is
possible for the hidden noise in the reference data to mis-
lead the tuning process when RMSE, MAE, or SSIM are
used to judge reconstruction performance, although the

0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024
Regularization parameter

same problems are not as severe if the NCE metric is used
instead.

To illustrate the potential practical consequences of
these hidden noise effects on parameter tuning, Figure 7
shows AC-LORAKS and P-LORAKS images where the
parameters in each case were chosen to minimize the
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Standard acquisition

5% Averaged

AC-LORAKS P-LORAKS

FIGURE 7

Images from the first experiment. The first two images are the noisy and 5x-averaged references. AC-LORAKS achieved

better conventional metrics, while P-LORAKS achieved a better non-central chi metric when evaluated with the noisy reference. When

compared to the 5x-averaged reference, the P-LORAKS reconstruction outperforms the AC-LORAKS reconstruction with respect to all of the

mean-squared error (MSE), mean absolute error (MAE), and the structural similarity index (SSIM) metrics, and is also visually sharper.

RMSE metric calculated using the “noisy” reference
image. In this case, the AC-LORAKS reconstruction had
better metrics (which were RMSE: 4.07; MAE: 3.00; SSIM:
0.89) than P-LORAKS (which were RMSE: 5.03; MAE:
4.05; SSIM: 0.79) when evaluated using the “noisy” ref-
erence image, and would be the method of choice under
the conventional parameter-tuning paradigm. However,
the AC-LORAKS metrics (which were RMSE: 3.90; MAE:
2.81; SSIM: 0.86) are worse than the P-LORAKS met-
rics (which were RMSE: 3.56; MAE: 2.24; SSIM: 0.91)
with respect to the “clean” reference image, so choos-
ing AC-LORAKS over P-LORAKS in this case would be
the wrong decision under these metrics. Qualitatively,
while the choice between AC-LORAKS and P-LORAKS
is necessarily subjective, we also personally prefer the
P-LORAKS result, which appears visually sharper than the
AC-LORAKS result. Notably, the NCE metric also prefers
the P-LORAKS result (NCE: 0.33) over the AC-LORAKS
result (NCE: 2.79), consistent with the metrics obtained
with the “clean” reference and also matching our personal
preferences.

4.2 | Machine learning reconstruction
with denoised data

Figures 8-10 show correlations between reconstruction
error metrics obtained with “clean” and “noisy” ref-
erence images using the fastMRI data. For the U-Net

(Figure 8), we observe that there is modestly good correla-
tion between the RMSE and MAE values corresponding to
the “clean” and “noisy” references, although the SSIM val-
ues were poorly correlated. In this case, the NCE metric is
slightly more correlated with the “clean” RMSE than the
“noisy” RMSE was, and the NCE metric is much more cor-
related with the “clean” SSIM than the “noisy” SSIM was,
although is a little worse at correlating with the “clean”
MAE than the “noisy” MAE (although these correlations
are not too different in this case). For MoDL (Figure 9),
we observe that there was good correlation between the
RMSE values corresponding to the “clean” and “noisy” ref-
erences, although the MAE and SSIM values were poorly
correlated (with negative correlation for SSIM). In this
case, the NCE metric was better correlated with “clean”
references than any of the metrics obtained with “noisy”
references, with substantial improvements for both MAE
and SSIM (although the SSIM correlation is still not partic-
ularly good). For E2E-VarNet (Figure 10) there was modest
correlation (correlation coefficients between 0.44 and 0.71)
between the RMSE, MAE, and SSIM values corresponding
to the “clean” and “noisy” references, although the corre-
lation values between the NCE metric and the “clean” ref-
erence metrics were nearly perfect (correlation coefficients
greater than 0.99 in all cases).

Overall, while there was more variation in this
machine learning scenario than there was in the previ-
ous regularization scenario, we still observe that there
are important cases where the hidden noise present in
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Evaluation of U-Net reconstructions using different error metrics. The top row shows correlations between the root

mean-squared error (RMSE), mean absolute error (MAE), and the structural similarity index (SSIM) values obtained using high-quality

(denoised) “clean” references and the same metrics obtained using “noisy” references, while the bottom row demonstrates correlations

between the high-quality reference metrics and our proposed noncentral chi error metric.
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Evaluation of MoDL reconstructions using different error metrics. The top row shows correlations between the root

mean-squared error (RMSE), mean absolute error (MAE), and the structural similarity index (SSIM) values obtained using high-quality
(denoised) “clean” references and the same metrics obtained using “noisy” references, while the bottom row demonstrates correlations
between the high-quality reference metrics and our proposed noncentral chi error metric.
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Evaluation of E2E-VarNet reconstructions using different error metrics. The top row shows correlations between the root

mean-squared error (RMSE), mean absolute error (MAE), and the structural similarity index (SSIM) values obtained using high-quality
(denoised) “clean” references and the same metrics obtained using “noisy” references, while the bottom row demonstrates correlations

between the high-quality reference metrics and our proposed noncentral chi error metric.

noisy reference images is likely to confound the opti-
mal training of machine learning reconstruction methods.
In addition, our proposed NCE metric often alleviated
this issue.

5 | DISCUSSION AND
CONCLUSIONS

Our results demonstrate that, although the effects of hid-
den noise are usually neglected in the modern image
reconstruction literature, this noise can substantially con-
found the assessment of image reconstruction perfor-
mance. Under the conventional paradigm, this will lead
to suboptimal ranking of different reconstructions and
unnecessary degradations in image quality. We believe
that awareness of this issue should have major conse-
quences for the development and assessment of image
reconstruction methods moving forward, since meth-
ods that are reported to have the best RMSE, MAE,
and SSIM values may not actually have the best per-
formance once the effects of hidden noise are properly
accounted for.

The issues of hidden noise can be somewhat mit-
igated by using error metrics like NCE that are cog-
nizant of noise in the reference data. In our empirical

tests, the correspondence between the NCE metric and
“clean” error metrics was comparable or superior (fre-
quently substantially superior) than that of conventional
“noisy” RMSE, MAE, or SSIM metrics in every case that
we tried, and the NCE was especially strongly correlated
with the “clean” RMSE. However, despite generally rep-
resenting an improvement over “noisy” RMSE, MAE, or
SSIM metrics, there were also some reconstructions for
which NCE still only had moderate correlation with cer-
tain “clean” error metrics. This was particularly true for
the SSIM metric with U-Net and MoDL reconstruction.
This phenomenon is interesting, and represents room for
potential improvements over NCE. Although we can only
conjecture at this stage, we speculate that this behav-
ior may have something to do with the fact that the
U-NET and MoDL reconstructions were less faithful to
the “clean” reference images than the images produced
by other methods we tried like E2E-VarNet (for which
the NCE was strongly correlated with the “clean” SSIM),
causing a lack of consistency between the way that recon-
structions were ranked by measures like RMSE and MAE
versus measures like SSIM. (Note that the performance
of U-Net, MoDL, and E2E-VarNet will be dependent on
both hyperparameter choices and the specific datasets
that are used for training. We generally followed the
same parameter choices that were used in the original
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publications, although the performance of all three
approaches can likely be improved using different choices,
and the fact that E2E-VarNet outperformed the other
architectures in our limited evaluation should not be con-
strued as an indication that E2E-VarNet will always out-
perform U-Net and MoDL).

This study focused on scenarios where reference
images are obtained by rSoS coil combination of multi-
channel images with spatially invariant Gaussian noise,
which we believe is the most widely used approach
in the modern literature. However, other approaches
of forming reference images are also sometimes used
that do not induce the NCC distribution. For example,
it is possible to use complex-valued sensitivity maps
in the coil-combination process, which will produce
complex-valued images with zero-mean Gaussian noise
and potentially higher SNR than would be achieved from
rSoS coil combination.'® (Note in this case that the use
of sensitivity maps will generally result in spatially vary-
ing Gaussian noise characteristics). Alternatively, it is also
possible to avoid coil-combination entirely, instead mea-
suring error on the original Gaussian-distributed multi-
channel images with spatially invariant noise. (Note in
this case that the individual multichannel images are
generally much noisier than coil-combined images [see,
e.g., Figure 2], which can present its own confounds).
With either of these strategies, measuring errors with
respect to complex-valued Gaussian-distributed images
may be potentially attractive, since the Gaussian noise will
have zero mean with less bias than Rician/NCC magni-
tude images. For example, Figure S2 shows an evalua-
tion of E2E-VarNet reconstructions where coil-sensitivity
maps were used instead of rSoS in the coil-combination
procedure to form complex-valued reference images.
Comparing against the results obtained with rSoS (cf.
Figure 10), the correlation between the “noisy” and
“clean” error metrics are much better when using this form
of coil combination, and the correlations are even slightly
better than those obtained for rSoS reference images with
the NCE metric. On the other hand, it is important to
keep in mind that while these complex-valued reference
images may be less susceptible to hidden noise than
rSoS images, they still contain hidden noise and can still
be confounded by it. For example, Figures S3 and S4
show results where we are reconstructing the previously
described brain MPRAGE dataset, but are now recon-
structing Nyquist-sampled data (i.e., these are denois-
ing scenarios, although similar behavior is observed with
undersampled data with low acceleration factors). In these
cases, the fact that hidden noise is still present in the
complex-valued reference images still causes the conven-
tional “noisy” error metrics to be grossly misled, strongly
preferring the original noisy dataset over the denoised
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images that are preferred by the “clean” error metrics.
In contrast, the NCE metric with rSoS coil combination
is much more strongly correlated with the “clean” error
metrics because it properly accounts for the presence of
noise. Thus, while hidden noise is of special concern when
using rSoS reference images, it can still be an impor-
tant consideration (i.e., it can present potential confounds
for the ranking of reconstruction methods and the inter-
pretation of results) when using other types of reference
images.

The observation that NCE frequently has certain
advantages over RMSE, MAE, and SSIM suggests that it
may be useful when choosing reconstruction parameters
or optimizing machine learning reconstruction models.
This was already demonstrated for P-LORAKS reconstruc-
tion (cf. Figures 5 and 6), where NCE enabled improved
selections of regularization and rank parameters. Our
preliminary experience using NCE as a loss function
suggests that similar improvements could be achieved
when training large machine learning models (not shown
due to space constraints). Although a thorough explo-
ration is beyond the scope of the present article, we
expect that this will be a fruitful direction for further
research.

The appropriateness of the NCC model in Equation (4)
and the corresponding NCE model (with “effective” &
and L) in Equation (5) is dependent on forming an
rSoS image from multichannel images that each con-
tain spatially-uncorrelated Gaussian noise with spatially
invariant characteristics. In this work, we satisfied these
assumptions by starting with Nyquist-sampled Cartesian
k-space data and forming images through the use of simple
linear Fourier inversion, without using other processing
steps that might influence the noise distribution. However,
it is important to note that there are potential scenarios
where these assumptions may be violated, and it is impor-
tant to approach noise modeling cautiously. For example,
our assumption that noise is spatially invariant will likely
be violated if images are obtained by applying parallel
imaging reconstruction methods to undersampled k-space
data, or if sensitivity maps are used to combine multichan-
nel images, or if some form of bias-field/intensity nonuni-
formity correction is applied, or if some form of interpola-
tion, translation, or other spatial transformation is applied
to the data, or if some form of advanced image recon-
struction or denoising method is applied. In such cases,
obtaining the best possible performance would would
likely require modeling the effects of these operations on
the noise distribution.

It should also be noted that, while we focused on scalar
image quality metrics in this work, image quality can
be quite nuanced and multidimensional. Important infor-
mation that is useful for deciding between two different
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reconstructed images can be lost when the quality of an
image is summarized by a single number that does not
account for different dimensions of image quality such as
SNR, contrast, and spatial resolution,?*37 or different tasks
like segmentation or pathology detection that the recon-
structed images will be used for downstream.?® As such,
while the scalar NCE metric perhaps has some advantages
over other scalar metrics like RMSE, MAE, and SSIM, it
still shares the same limitation of all scalar metrics that
it cannot possibly provide separate insights into all of the
multifold aspects of image quality that may be important
in the context of a given MRI application. This means that
NCE should still be used with the same amount of caution
that should be used with every other scalar performance
metric. As a result, we believe that our primary contribu-
tion is the observation that hidden noise is an important
factor to consider, which has the potential to confound
performance evaluation in a wide variety of image recon-
struction scenarios.

ENDNOTE

*Although the word “noise” is sometimes used in dif-
ferent contexts within MRI (e.g., physiological noise,
acoustic noise, etc.), this article always uses “noise” to
refer to the random (Johnson-Nyquist) signal fluctu-
ations present in the measured data that result from
the thermal agitation of charged particles within the
subject and the receiver chain.®

"It is worth mentioning that the classical Rician noise
model for fully sampled single-channel magnitude
images'>!3 is a special case of the NCC model, although
readers should be cautioned that classical spatially
invariant Rician noise modeling is frequently an inad-
equate representation of the noise characteristics of
modern image acquisition and reconstruction meth-
ods.”

fAlthough tangential to the scope of this article,
we should also mention for the sake of complete-
ness that there exist approaches that can also be
used to better account for the presence of noise
in Gaussian-distributed complex-valued reference
images. For example, classical statistical metrics like
Stein’s unbiased risk estimator3* could potentially be
used to estimate the MSE, although for this to be accu-
rate in the case where coil-combined reference images
are obtained using sensitivity maps, it would be impor-
tant for the Stein’s unbiased risk estimator calculations
to incorporate information about the spatial variation
of the Gaussian noise distribution. Alternatively, the
Noise2Noise procedure can also be used in scenarios
where multiple noisy observations of the same image
are available.®
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Figure S1. Evaluation of P-LORAKS reconstructions
(with different regularization parameters, for a fixed
value of the rank parameter) using different error met-
rics. The top row shows correlations between the RMSE,
MAE, and SSIM values obtained using a high-quality
(5x-averaged) “clean” reference and the same met-
rics obtained using a single-average “noisy” reference,
while the bottom row demonstrates correlations between
the high-quality reference metrics and our proposed
NCE metric.

Figure S2. Evaluation of E2E-VarNet reconstructions
when complex-valued reference images (coil-combined
using sensitivity maps) are used instead of rSoS refer-
ence images. The plots show correlations between the
RMSE, MAE, and SSIM values obtained using high-quality
(denoised) “clean” references and the same metrics
obtained using “noisy” references.

Figure S3. Evaluation of SENSE-TV reconstructions of
Nyquist-sampled k-space data (with different regular-
ization parameters). The top row shows correlations
between the RMSE, MAE, and SSIM values obtained using
“noisy” and “clean” complex-valued reference images
(coil-combined using sensitivity maps), while the bottom
row shows correlations between the RMSE, MAE, and
SSIM values obtained from a “clean” rSoS reference image
versus the NCE metric for to “noisy” rSoS reference image.
In both cases, the “clean” references were obtained from
high-quality (5x-averaged) data and the “noisy” references
were obtained from single-average data.

Figure S4. Evaluation of P-LORAKS reconstructions of
Nyquist-sampled k-space data (with different regulariza-
tion parameters, for a fixed value of the rank parameter).
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The top row shows correlations between the RMSE,
MAE, and SSIM values obtained using “noisy” and
“clean” complex-valued reference images (multichannel
images without coil combination, with error metrics aver-
aged across all channels), while the bottom row shows
correlations between the RMSE, MAE, and SSIM val-
ues obtained from a “clean” rSoS reference image versus
the NCE metric for to “noisy” rSoS reference image. In
both cases, the “clean” references were obtained from

high-quality (5x-averaged) data and the “noisy” references
were obtained from single-average data.
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